Measuring the Hardness of Stochastic Sampling on Bayesian Networks with Deterministic Causalities: the k-Test
نویسندگان
چکیده
Approximate Bayesian inference is NP-hard. Dagum and Luby defined the Local Variance Bound (LVB) to measure the approximation hardness of Bayesian inference on Bayesian networks, assuming the networks model strictly positive joint probability distributions, i.e. zero probabilities are not permitted. This paper introduces the k-test to measure the approximation hardness of inference on Bayesian networks with deterministic causalities in the probability distribution, i.e. when zero conditional probabilities are permitted. Approximation by stochastic sampling is a widely-used inference method that is known to suffer from inefficiencies due to sample rejection. The k-test predicts when rejection rates of stochastic sampling a Bayesian network will be low, modest, high, or when sampling is intractable.
منابع مشابه
Capability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields
The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملImportance Sampling via Variational Optimization
Computing the exact likelihood of data in large Bayesian networks consisting of thousands of vertices is often a difficult task. When these models contain many deterministic conditional probability tables and when the observed values are extremely unlikely even alternative algorithms such as variational methods and stochastic sampling often perform poorly. We present a new importance sampling a...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملPerformance evaluation of Iranian electricity distribution units with stochastic Data Envelopment Analysis
Performance evaluation of electricity distribution units is an important issue between researchers and regulators. Classic Data Envelopment Analysis models with deterministic data have been used by many authors to measure efficiency of power distribution units in different countries. However, Data Envelopment Analysis with stochastic data are rarely used to measure efficiency of distribution co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011